Learning Stable Nonparametric Dynamical Systems with Gaussian Process Regression
نویسندگان
چکیده
منابع مشابه
Incremental Motion Learning with Gaussian Process Modulated Dynamical Systems
Dynamical Systems (DS) for robot motion modeling are well-suited for efficient robot learning and control. Our focus in this extended abstract is on autonomous dynamical systems, which represent a motion plan completely without dependency on time. We develop a method that allows to locally reshape an existing, stable autonomous DS without risking introduction of additional equilibrium points or...
متن کاملLearning Stable Linear Dynamical Systems Learning Stable Linear Dynamical Systems
Stability is a desirable characteristic for linear dynamical systems, but it is often ignored by algorithms that learn these systems from data. We propose a novel method for learning stable linear dynamical systems: we formulate an approximation of the problem as a convex program, start with a solution to a relaxed version of the program, and incrementally add constraints to improve stability. ...
متن کاملModel Learning with Local Gaussian Process Regression
Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse d...
متن کاملVariational Gaussian Process Dynamical Systems
High dimensional time series are endemic in applications of machine learning such as robotics (sensor data), computational biology (gene expression data), vision (video sequences) and graphics (motion capture data). Practical nonlinear probabilistic approaches to this data are required. In this paper we introduce the variational Gaussian process dynamical system. Our work builds on recent varia...
متن کاملPosterior Consistency of Gaussian Process Prior for Nonparametric Binary Regression
Consider binary observations whose response probability is an unknown smooth function of a set of covariates. Suppose that a prior on the response probability function is induced by a Gaussian process mapped to the unit interval through a link function. In this paper we study consistency of the resulting posterior distribution. If the covariance kernel has derivatives up to a desired order and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.1335